Set-theoretic types for polymorphic variants

Author:

Castagna Giuseppe1,Petrucciani Tommaso2,Nguyễn Kim3

Affiliation:

1. University of Paris Diderot, France

2. University of Genoa, Italy / University of Paris Diderot, France

3. University of Paris-Sud, France

Abstract

Polymorphic variants are a useful feature of the OCaml language whose current definition and implementation rely on kinding constraints to simulate a subtyping relation via unification. This yields an awkward formalization and results in a type system whose behaviour is in some cases unintuitive and/or unduly restrictive. In this work, we present an alternative formalization of polymorphic variants, based on set-theoretic types and subtyping, that yields a cleaner and more streamlined system. Our formalization is more expressive than the current one (it types more programs while preserving type safety), it can internalize some meta-theoretic properties, and it removes some pathological cases of the current implementation resulting in a more intuitive and, thus, predictable type system. More generally, this work shows how to add full-fledged union types to functional languages of the ML family that usually rely on the Hindley-Milner type system. As an aside, our system also improves the theory of semantic subtyping, notably by proving completeness for the type reconstruction algorithm.

Funder

Oracle

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Subtyping Constraints Liberate: A Novel Type Inference Approach for First-Class Polymorphism;Proceedings of the ACM on Programming Languages;2024-01-05

2. Polymorphic Type Inference for Dynamic Languages;Proceedings of the ACM on Programming Languages;2024-01-05

3. Making a Type Difference: Subtraction on Intersection Types as Generalized Record Operations;Proceedings of the ACM on Programming Languages;2023-01-09

4. Simple Extensible Programming through Precisely-Typed Open Recursion;Companion Proceedings of the 2022 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity;2022-11-29

5. MLstruct: principal type inference in a Boolean algebra of structural types;Proceedings of the ACM on Programming Languages;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3