A Comprehensive Survey on Automated Machine Learning for Recommendations

Author:

Chen Bo1,Zhao Xiangyu2,Wang Yejing2,Fan Wenqi3,Guo Huifeng1,Tang Ruiming1

Affiliation:

1. Huawei Noah’s Ark Lab, China

2. City University of Hong Kong, HK

3. The Hong Kong Polytechnic University, HK

Abstract

Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user’s interests and preferences. They have unprecedented feature representations effectiveness and the capacity of modeling the non-linear relationships between users and items. Despite their advancements, DRS models, like other deep learning models, employ sophisticated neural network architectures and other vital components that are typically designed and tuned by human experts. This article will give a comprehensive summary of automated machine learning (AutoML) for developing DRS models. We first provide an overview of AutoML for DRS models and the related techniques. Then we discuss the state-of-the-art AutoML approaches that automate the feature selection, feature embeddings, feature interactions, and model training in DRS. We point out that the existing AutoML-based recommender systems are developing to a multi-component joint search with abstract search space and efficient search algorithm. Finally, we discuss appealing research directions and summarize the survey.

Publisher

Association for Computing Machinery (ACM)

Reference137 articles.

1. Reza Refaei Afshar Yingqian Zhang Joaquin Vanschoren and Uzay Kaymak. 2022. Automated Reinforcement Learning: An Overview. arXiv preprint arXiv:2201.05000(2022). Reza Refaei Afshar Yingqian Zhang Joaquin Vanschoren and Uzay Kaymak. 2022. Automated Reinforcement Learning: An Overview. arXiv preprint arXiv:2201.05000(2022).

2. Yoshua Bengio Nicholas Léonard and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432(2013). Yoshua Bengio Nicholas Léonard and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432(2013).

3. James Bergstra , Rémi Bardenet , Yoshua Bengio , and Balázs Kégl . 2011 . Algorithms for hyper-parameter optimization . Proceedings of the Conference on Neural Information Processing Systems (NeurIPS) 24(2011) . James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for hyper-parameter optimization. Proceedings of the Conference on Neural Information Processing Systems (NeurIPS) 24(2011).

4. James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization.Journal of machine learning research(2012). James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization.Journal of machine learning research(2012).

5. Bayesian neural architecture search using a training-free performance metric;Camero Andrés;Applied Soft Computing,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ERASE: Benchmarking Feature Selection Methods for Deep Recommender Systems;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Revealing the Hidden Impact of Top-N Metrics on Optimization in Recommender Systems;Lecture Notes in Computer Science;2024

3. Improving Recommender Systems Through the Automation of Design Decisions;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3