Depth Image Denoising Using Nuclear Norm and Learning Graph Model

Author:

Yan Chenggang1,Li Zhisheng1,Zhang Yongbing2,Liu Yutao2ORCID,Ji Xiangyang3,Zhang Yongdong4

Affiliation:

1. Hangzhou Dianzi University, Hangzhou, China

2. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

3. Tsinghua University, Beijing, China

4. University of Science and Technology of China, Hefei, China

Abstract

Depth image denoising is increasingly becoming the hot research topic nowadays, because it reflects the three-dimensional scene and can be applied in various fields of computer vision. But the depth images obtained from depth camera usually contain stains such as noise, which greatly impairs the performance of depth-related applications. In this article, considering that group-based image restoration methods are more effective in gathering the similarity among patches, a group-based nuclear norm and learning graph (GNNLG) model was proposed. For each patch, we find and group the most similar patches within a searching window. The intrinsic low-rank property of the grouped patches is exploited in our model. In addition, we studied the manifold learning method and devised an effective optimized learning strategy to obtain the graph Laplacian matrix, which reflects the topological structure of image, to further impose the smoothing priors to the denoised depth image. To achieve fast speed and high convergence, the alternating direction method of multipliers is proposed to solve our GNNLG. The experimental results show that the proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3