1. Research status analysis of surface subsidence prediction and control of deep foundation pit [J];Guolin Wang;Industrial Construction,2023
2. Qin Shiwei, Lu Junyu. Prediction of pipeline subsidence around foundation pit based on GCN-GRU combination model [J]. Journal of Yangzhou University (Natural Science Edition), 2023, 26(04):73-78.DOI:10.19411/ j.1007-824X.2023.04.013.
3. CAI Qunqun. Research on deep foundation pit deformation prediction based on particle swarm optimization improved Support vector Machine [J]. Heilongjiang traffic science and technology, 2023, 46-48 (5) : 97-99 + 103. DOI: 10.16402 / j.carol carroll nki issn1008-3383.2023.05.032.
4. Ngoc D. M. Nu N. T. Tinh D. M. van Loi B. & Huong N. T. T. 2020. An analytical model for residual stress prediction in rebound deformation of the foundation pit. Journal of Applied Science and Engineering 23(4) 661–668. https://doi.org/10.6180/jase.202012_23(4).0010
5. Li Wan, Feng Fenling, Jiang Qiwei. Improved particle swarm algorithm to optimize LSTM neural network of railway passenger traffic prediction [J]. Journal of railway science and engineering, 2018, (12) : 3274-3280. The DOI: 10.19713 / j.carol carroll nki. 43-1423 / u 2018.12.033.