Tiling with Squares and Packing Dominos in Polynomial Time

Author:

Aamand Anders1ORCID,Abrahamsen Mikkel2ORCID,Rasmussen Peter M. R.2ORCID,Ahle Thomas D.3ORCID

Affiliation:

1. Computer Science and Artificial Intelligence Lab, MIT, USA

2. BARC, University of Copenhagen, Denmark

3. Meta, USA

Abstract

A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P . We give polynomial-time algorithms for deciding if P can be tiled with k × k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k × k squares) and for packing P with a maximum number of non-overlapping and axis-parallel 2 × 1 dominos, allowing rotations by 90°. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2 × 1 dominos. These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2 × 2 squares is known to be NP-hard [ 6 ]. For our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P . However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple O(n log n )-time algorithm for tiling with squares, where n is the number of corners of P . We then give a more involved algorithm that reduces the problems of packing and tiling with dominos to finding a maximum and perfect matching in a graph with O ( n 3 ) vertices. This leads to algorithms with running times \(O(n^3 \frac{\log ^3 n}{\log ^2\log n})\) and \(O(n^3 \frac{\log ^2 n}{\log \log n})\) , respectively.

Funder

Independent Research Fund Denmark

VILLUM Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3