Affiliation:
1. Stanford University, Stanford, CA
Abstract
Distributing a simulation across many machines can drastically speed up computations and increase detail. The computing cloud provides tremendous computing resources, but weak service guarantees force programs to manage significant system complexity: nodes, networks, and storage occasionally perform poorly or fail.
We describe Nimbus, a system that automatically distributes grid-based and hybrid simulations across cloud computing nodes. The main simulation loop is sequential code and launches distributed computations across many cores. The simulation on each core runs as if it is stand-alone: Nimbus automatically stitches these simulations into a single, larger one. To do this efficiently, Nimbus introduces a four-layer data model that translates between the contiguous, geometric objects used by simulation libraries and the replicated, fine-grain objects managed by its underlying cloud computing runtime.
Using PhysBAM particle-level set fluid simulations, we demonstrate that Nimbus can run higher detail simulations faster, distribute simulations on up to 512 cores, and run enormous simulations (1024
3
cells). Nimbus automatically manages these distributed simulations, balancing load across nodes and recovering from failures. Implementations of PhysBAM water and smoke simulations as well as an open source heat-diffusion simulation show that Nimbus is general and can support complex simulations.
Nimbus can be downloaded from https://nimbus.stanford.edu.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献