1. Mcnee, S., Riedl, J., and Konstan, J. 2006. Being accurate is not enough: How accuracy metrics have hurt recommender systems. Conference on Human Factors in Computing Systems, (Montréal, Québec, Canada. April 22-27, 2006) CHI. ACM, New York, NY, 1097--1101.
2. Lü, L., Medo, M., Chi, H. Y., Zhang, Y. C., Zhang, Z. K., and Zhou, T.2012 Recommender systems. Physics Reports.519, 1 (Oct. 2012), 1--49.
3. Hurley, N. and Zhang, M. 2011. Novelty and diversity in top-n recommendation -- analysis and evaluation. ACM Transactions on Internet Technology.10, 4 (March 2011), 1--30. DOI=http://doi.acm.org/10.1145/1944339.1944341.
4. Onuma, K., Tong, H., and Faloutsos, C. 2009.TANGENT: a novel, 'Surprise me', recommendation algorithm. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Paris, France. Paris, June 28- July, 2009). KDD'09. ACM, New York, NY, 657--666. DOI= http://doi.acm.org/10.1145/1557019.1557093.
5. Weng, L.-T., Xu, Y., Li, Y., and Nayak, R. 2007. Improving recommendation novelty based on topic taxonomy. In Proceedings 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops (WI-IATW). 115-118.