Remote Data Auditing in Cloud Computing Environments

Author:

Sookhak Mehdi1,Gani Abdullah1,Talebian Hamid1,Akhunzada Adnan1,Khan Samee U.2,Buyya Rajkumar3,Zomaya Albert Y.4

Affiliation:

1. University of Malaya, Kuala Lumpur, Malaysia

2. North Dakota State University, USA

3. University of Melbourne, Melbourne, Australia

4. University of Sydney, Australia

Abstract

Cloud computing has emerged as a long-dreamt vision of the utility computing paradigm that provides reliable and resilient infrastructure for users to remotely store data and use on-demand applications and services. Currently, many individuals and organizations mitigate the burden of local data storage and reduce the maintenance cost by outsourcing data to the cloud. However, the outsourced data is not always trustworthy due to the loss of physical control and possession over the data. As a result, many scholars have concentrated on relieving the security threats of the outsourced data by designing the Remote Data Auditing (RDA) technique as a new concept to enable public auditability for the stored data in the cloud. The RDA is a useful technique to check the reliability and integrity of data outsourced to a single or distributed servers. This is because all of the RDA techniques for single cloud servers are unable to support data recovery; such techniques are complemented with redundant storage mechanisms. The article also reviews techniques of remote data auditing more comprehensively in the domain of the distributed clouds in conjunction with the presentation of classifying ongoing developments within this specified area. The thematic taxonomy of the distributed storage auditing is presented based on significant parameters, such as scheme nature, security pattern, objective functions, auditing mode, update mode, cryptography model, and dynamic data structure. The more recent remote auditing approaches, which have not gained considerable attention in distributed cloud environments, are also critically analyzed and further categorized into three different classes, namely, replication based, erasure coding based, and network coding based, to present a taxonomy. This survey also aims to investigate similarities and differences of such a framework on the basis of the thematic taxonomy to diagnose significant and explore major outstanding issues.

Funder

Malaysian Ministry of Higher Education as the University of Malaya High Impact Research

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3