Polymorphic higher-order recursive path orderings

Author:

Jouannaud Jean-Pierre1,Rubio Albert2

Affiliation:

1. LIX, École Polytechnique, Palaiseau, France

2. Technical University of Catalonia, Barcelona, Spain

Abstract

This article extends the termination proof techniques based on reduction orderings to a higher-order setting, by defining a family of recursive path orderings for terms of a typed lambda-calculus generated by a signature of polymorphic higher-order function symbols. These relations can be generated from two given well-founded orderings, on the function symbols and on the type constructors. The obtained orderings on terms are well founded, monotonic, stable under substitution and include β-reductions. They can be used to prove the strong normalization property of higher-order calculi in which constants can be defined by higher-order rewrite rules using first-order pattern matching. For example, the polymorphic version of Gödel's recursor for the natural numbers is easily oriented. And indeed, our ordering is polymorphic, in the sense that a single comparison allows to prove the termination property of all monomorphic instances of a polymorphic rewrite rule. Many nontrivial examples are given that exemplify the expressive power of these orderings. All have been checked by our implementation. This article is an extended and improved version of Jouannaud and Rubio [1999]. Polymorphic algebras have been made more expressive than in our previous framework. The intuitive notion of a polymorphic higher-order ordering has now been made precise. The higher-order recursive path ordering itself has been made much more powerful by replacing the congruence on types used there by an ordering on types satisfying some abstract properties. Besides, using a restriction of Dershowitz's recursive path ordering for comparing types, we can integrate both orderings into a single one operating uniformly on both terms and types.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3