A Game-Theoretic Analysis of Energy-Depleting Jamming Attacks with a Learning Counterstrategy

Author:

Chiariotti Federico1ORCID,Pielli Chiara1,Laurenti Nicola1,Zanella Andrea1,Zorzi Michele1

Affiliation:

1. University of Padova, Italy

Abstract

Jamming may become a serious threat in Internet of Things networks of battery-powered nodes, as attackers can disrupt packet delivery and significantly reduce the lifetime of the nodes. In this work, we model an active defense scenario in which an energy-limited node uses power control to defend itself from a malicious attacker, whose energy constraints may not be known to the defender. The interaction between the two nodes is modeled as an asymmetric Bayesian game where the victim has incomplete information about the attacker. We show how to derive the optimal Bayesian strategies for both the defender and the attacker, which may then serve as guidelines to develop and gauge efficient heuristics that are less computationally expensive than the optimal strategies. For example, we propose a neural-network-based learning method that allows the node to effectively defend itself from the jamming with a significantly reduced computational load. The outcomes of the ideal strategies highlight the tradeoff between node lifetime and communication reliability and the importance of an intelligent defense from jamming attacks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal privacy preservation strategies with signaling Q-learning for edge-computing-based IoT resource grant systems;Expert Systems with Applications;2023-09

2. Optimal Association Strategy of Multi-Gateway Wireless Sensor Networks Against Smart Jammers;IEEE Wireless Communications Letters;2023-02

3. CTJammer: A Cross-Technology Reactive Jammer towards Unlicensed LTE;2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI);2022-05

4. Modeling and simulation of defense game model for jamming attack in wireless sensor networks using evolutionary game theory;Concurrency and Computation: Practice and Experience;2021-12-12

5. Robust Networking: Dynamic Topology Evolution Learning for Internet of Things;ACM Transactions on Sensor Networks;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3