Task-based Parallel Programming for Scalable Matrix Product Algorithms

Author:

Agullo Emmanuel1ORCID,Buttari Alfredo2ORCID,Guermouche Abdou3ORCID,Herrmann Julien2ORCID,Jego Antoine4ORCID

Affiliation:

1. Inria-LaBRI

2. IRIT, Université de Toulouse, CNRS

3. Université de Bordeaux

4. IRIT, Université de Toulouse, INPT

Abstract

Task-based programming models have succeeded in gaining the interest of the high-performance mathematical software community because they relieve part of the burden of developing and implementing distributed-memory parallel algorithms in an efficient and portable way.In increasingly larger, more heterogeneous clusters of computers, these models appear as a way to maintain and enhance more complex algorithms. However, task-based programming models lack the flexibility and the features that are necessary to express in an elegant and compact way scalable algorithms that rely on advanced communication patterns. We show that the Sequential Task Flow paradigm can be extended to write compact yet efficient and scalable routines for linear algebra computations. Although, this work focuses on dense General Matrix Multiplication, the proposed features enable the implementation of more complex algorithms. We describe the implementation of these features and of the resulting GEMM operation. Finally, we present an experimental analysis on two homogeneous supercomputers showing that our approach is competitive up to 32,768 CPU cores with state-of-the-art libraries and may outperform them for some problem dimensions. Although our code can use GPUs straightforwardly, we do not deal with this case because it implies other issues which are out of the scope of this work.

Funder

SOLHARIS project

French National Research Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3