Incremental graph pattern matching

Author:

Fan Wenfei1,Wang Xin2,Wu Yinghui3

Affiliation:

1. University of Edinburgh and Beihang University, Scotland, UK

2. University of Edinburgh, Scotland, UK

3. University of Edinburgh and University of California Santa Barbara, Santa Barbara, CA

Abstract

Graph pattern matching is commonly used in a variety of emerging applications such as social network analysis. These applications highlight the need for studying the following two issues. First, graph pattern matching is traditionally defined in terms of subgraph isomorphism or graph simulation. These notions, however, often impose too strong a topological constraint on graphs to identify meaningful matches. Second, in practice a graph is typically large, and is frequently updated with small changes. It is often prohibitively expensive to recompute matches starting from scratch via batch algorithms when the graph is updated. This article studies these two issues. (1) We propose to define graph pattern matching based on a notion of bounded simulation , which extends graph simulation by specifying the connectivity of nodes in a graph within a predefined number of hops. We show that bounded simulation is able to find sensible matches that the traditional matching notions fail to catch. We also show that matching via bounded simulation is in cubic time, by giving such an algorithm. (2) We provide an account of results on incremental graph pattern matching, for matching defined with graph simulation, bounded simulation, and subgraph isomorphism. We show that the incremental matching problem is unbounded , that is, its cost is not determined alone by the size of the changes in the input and output, for all these matching notions. Nonetheless, when matching is defined in terms of simulation or bounded simulation, incremental matching is semibounded , that is, its worst-time complexity is bounded by a polynomial in the size of the changes in the input, output, and auxiliary information that is necessarily maintained to reuse previous computation, and the size of graph patterns. We also develop incremental matching algorithms for graph simulation and bounded simulation, by minimizing unnecessary recomputation. In contrast, matching based on subgraph isomorphism is neither bounded nor semibounded. (3) We experimentally verify the effectiveness and efficiency of these algorithms, and show that: (a) the revised notion of graph pattern matching allows us to identify communities commonly found in real-life networks, and (b) the incremental algorithms substantially outperform their batch counterparts in response to small changes. These suggest a promising framework for real-life graph pattern matching.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference60 articles.

1. Challenges in searching online communities;Amer-Yahia S.;IEEE Data Engin. Bull.,2007

2. Holistic twig joins

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Graph Pattern Matching via Tumor Knowledge Graph;ACM Transactions on Probabilistic Machine Learning;2024-07-29

2. TC-Match: Fast Time-Constrained Continuous Subgraph Matching;Proceedings of the VLDB Endowment;2024-07

3. GPU-accelerated relaxed graph pattern matching algorithms;The Journal of Supercomputing;2024-06-16

4. PG-Triggers: Triggers for Property Graphs;Companion of the 2024 International Conference on Management of Data;2024-06-09

5. In-depth Analysis of Continuous Subgraph Matching in a Common Delta Query Compilation Framework;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3