Context-aware Optimization for Bandwidth-Efficient Image Analytics Offloading

Author:

Chen Bo1,Yan Zhisheng2,Nahrstedt Klara1

Affiliation:

1. University of Illinois Urbana-Champaign, USA

2. George Mason University, USA

Abstract

Convolutional Neural Networks (CNN) have given rise to numerous visual analytics applications at the edge of the Internet. The image is typically captured by cameras and then live-streamed to edge servers for analytics due to the prohibitive cost of running CNN on computation-constrained end devices. A critical component to ensure low-latency and accurate visual analytics offloading over low bandwidth networks is image compression which minimizes the amount of visual data to offload and maximizes the decoding quality of salient pixels for analytics. Despite the wide adoption, JPEG standards and traditional image compression techniques do not address the accuracy of analytics tasks, leading to ineffective compression for visual analytics offloading. Although recent machine-centric image compression techniques leverage sophisticated neural network models or hardware architecture to support the accuracy-bandwidth trade-off, they introduce excessive latency in the visual analytics offloading pipeline. This paper presents CICO, a Context-aware Image Compression Optimization framework to achieve low-bandwidth and low-latency visual analytics offloading. CICO contextualizes image compression for offloading by employing easily-computable low-level image features to understand the importance of different image regions for a visual analytics task. Accordingly, CICO can optimize the trade-off between compression size and analytics accuracy. Extensive real-world experiments demonstrate that CICO reduces the bandwidth consumption of existing compression methods by up to 40% under comparable analytics accuracy. Regarding the low-latency support, CICO achieves up to a 2x speedup over state-of-the-art compression techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference49 articles.

1. Motilal Agrawal , Kurt Konolige , and Morten Rufus Blas . 2008 . Censure: Center surround extremas for realtime feature detection and matching . In European Conference on Computer Vision. Springer, 102–115 . Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. 2008. Censure: Center surround extremas for realtime feature detection and matching. In European Conference on Computer Vision. Springer, 102–115.

2. Generative Adversarial Networks for Extreme Learned Image Compression

3. Johannes Ballé Valero Laparra and Eero P Simoncelli. 2016. End-to-end optimized image compression. arXiv preprint arXiv:1611.01704(2016). Johannes Ballé Valero Laparra and Eero P Simoncelli. 2016. End-to-end optimized image compression. arXiv preprint arXiv:1611.01704(2016).

4. Johannes Ballé David Minnen Saurabh Singh Sung Jin Hwang and Nick Johnston. 2018. Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436(2018). Johannes Ballé David Minnen Saurabh Singh Sung Jin Hwang and Nick Johnston. 2018. Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436(2018).

5. Fabrice Bellard. 2018. BPG Image Format. https://bellard.org/bpg/ Fabrice Bellard. 2018. BPG Image Format. https://bellard.org/bpg/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3