A Systematic Literature Review on Federated Machine Learning

Author:

Lo Sin Kit1ORCID,Lu Qinghua1,Wang Chen2,Paik Hye-Young3ORCID,Zhu Liming1

Affiliation:

1. Data61, CSIRO and University of New South Wales, Australia

2. Data61, CSIRO, Australia

3. University of New South Wales, Australia

Abstract

Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results and identify future trends to encourage researchers to advance their current work.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference211 articles.

1. ISO/IEC 25012. 2008. Software engineering–software product quality requirements and evaluation (SQuaRE)–data quality model. ISO/IEC 25012. 2008. Software engineering–software product quality requirements and evaluation (SQuaRE)–data quality model.

2. ISO/IEC 25010. 2011. Software engineering–software product quality requirements and evaluation (SQuaRE)–system and software quality models. ISO/IEC 25010. 2011. Software engineering–software product quality requirements and evaluation (SQuaRE)–system and software quality models.

3. General Data Protection Regulation. 2018. EU data protection rules. 1821--1834. Retrieved from https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en. General Data Protection Regulation. 2018. EU data protection rules. 1821--1834. Retrieved from https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en.

4. Mehdi Salehi Heydar Abad Emre Ozfatura Deniz Gunduz and Ozgur Ercetin. 2019. Hierarchical federated learning across heterogeneous cellular networks. Retrieved from https://arXiv:1909.02362. Mehdi Salehi Heydar Abad Emre Ozfatura Deniz Gunduz and Ozgur Ercetin. 2019. Hierarchical federated learning across heterogeneous cellular networks. Retrieved from https://arXiv:1909.02362.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3