Computing repair alternatives for malformed programs using constraint attribute grammars

Author:

Steimann Friedrich1,Hagemann Jörg1,Ulke Bastian1

Affiliation:

1. Fernuniversität in Hagen, Germany

Abstract

Attribute grammars decorate the nodes of a program's parse tree with attributes whose values are defined by equations encoding the (static) semantics of a programming language. We show how replacing the equations of an attribute grammar with equivalent constraints that can be solved by a constraint solver allows us to compute repairs of a malformed program solely from a specification that was originally designed for checking its well-formedness. We present two repair modes --- shallow and deep fixing --- whose computed repair alternatives are guaranteed to repair every error on which they are invoked. While shallow fixing may introduce new errors, deep fixing never does; to make it tractable, we implement it using neighborhood search. We demonstrate the feasibility of our approach by implementing it on top of ExtendJ, an attribute grammar based Java compiler, and by applying it to an example from the Java EE context, detecting and fixing well-formedness errors (both real and injected) in a body of 14 open-source subject programs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supporting Engineering Process Compliance via Generation of Detailed Guidance Actions;Proceedings of the 2024 International Conference on Software and Systems Processes;2024-09-04

2. Consistent change propagation within models;Software and Systems Modeling;2020-08-25

3. Relational reference attribute grammars: Improving continuous model validation;Journal of Computer Languages;2020-04

4. Model Finding in the EMF Ecosystem.;The Journal of Object Technology;2020

5. Detecting and exploring side effects when repairing model inconsistencies;Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering - SLE 2019;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3