Prioritized garbage collection: explicit GC support for software caches

Author:

Nunez Diogenes1,Guyer Samuel Z.1,Berger Emery D.2

Affiliation:

1. Tufts University, USA

2. University of Massachusetts at Amherst, USA

Abstract

Programmers routinely trade space for time to increase performance, often in the form of caching or memoization. In managed languages like Java or JavaScript, however, this space-time tradeoff is complex. Using more space translates into higher garbage collection costs, especially at the limit of available memory. Existing runtime systems provide limited support for space-sensitive algorithms, forcing programmers into difficult and often brittle choices about provisioning. This paper presents prioritized garbage collection , a cooperative programming language and runtime solution to this problem. Prioritized GC provides an interface similar to soft references, called priority references , which identify objects that the collector can reclaim eagerly if necessary. The key difference is an API for defining the policy that governs when priority references are cleared and in what order. Application code specifies a priority value for each reference and a target memory bound. The collector reclaims references, lowest priority first, until the total memory footprint of the cache fits within the bound. We use this API to implement a space-aware least-recently-used (LRU) cache, called a Sache , that is a drop-in replacement for existing caches, such as Google's Guava library. The garbage collector automatically grows and shrinks the Sache in response to available memory and workload with minimal provisioning information from the programmer. Using a Sache, it is almost impossible for an application to experience a memory leak, memory pressure, or an out-of-memory crash caused by software caching.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference20 articles.

1. GC assertions

2. Workload analysis of a large-scale key-value store

3. Jonathan Bellis. Jamm. https://github.com/jbellis/jamm. Jonathan Bellis. Jamm. https://github.com/jbellis/jamm.

4. Myths and realities

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Increased Datacenter Efficiency with Soft Memory;Proceedings of the 19th Workshop on Hot Topics in Operating Systems;2023-06-22

2. Optimal heap limits for reducing browser memory use;Proceedings of the ACM on Programming Languages;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3