Au-Id

Author:

Huang Anna1,Wang Dong1,Zhao Run1,Zhang Qian1

Affiliation:

1. Shanghai Jiao Tong University, China

Abstract

The advancements of ambient intelligence and ubiquitous computing are driving the unprecedented development of smart spaces where enhanced services are provided based on activity recognition. Meanwhile, user identification, which can enable the personalization of the enhanced services for specific users and the access control of confidential information, becomes increasingly important. Traditional approaches to user identification require either attached wearable sensors or active user participation. This paper presents Au-Id, a non-intrusive automatic user identification and authentication system through human motions captured from their daily activities based on RFID. The key insight is that the RFID tag array can capture human's physical and behavioral characteristics for user identification. Particularly, phase and RSSI data streams of the RFID tag array are fused to incorporate the information from time, space and modality dimensions. Based on this, a novel sequence labeling based segmentation method is proposed for target motion extraction. Then Au-Id leverages a multi-modal Convolutional Neural Network (CNN) for user identification and significantly reduces the training efforts by transfer learning. In addition, Au-Id facilitates user authentication by integrating the feature representations extracted by CNN with one-class SVM classifiers. The evaluation shows that Au-Id can achieve accurate and robust user identification and authentication.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference49 articles.

1. 3D Tracking via Body Radio Reflections;Adib Fadel;NSDI,2014

2. Human identification by gait analysis

3. FEMO

4. Biometric Gait Authentication Using Accelerometer Sensor;Gafurov Davrondzhon;JCP,2006

5. Gait Recognition Using Wearable Motion Recording Sensors

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3