Nearly Optimal Pseudorandomness from Hardness

Author:

Doron Dean1ORCID,Moshkovitz Dana2ORCID,Oh Justin2ORCID,Zuckerman David2ORCID

Affiliation:

1. Ben Gurion University of the Negev, Beer-Sheva, Israel

2. University of Texas at Austin, Austin, Texas, USA

Abstract

Existing proofs that deduce BPP = P from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown . Specifically, assuming exponential lower bounds against randomized NP ∩ coNP circuits, formally known as randomized SVN circuits, we convert any randomized algorithm over inputs of length n running in time tn into a deterministic one running in time t 2+α for an arbitrarily small constant α > 0. Such a slowdown is nearly optimal for t close to n , since under standard complexity-theoretic assumptions, there are problems with an inherent quadratic derandomization slowdown. We also convert any randomized algorithm that errs rarely into a deterministic algorithm having a similar running time (with pre-processing). The latter derandomization result holds under weaker assumptions, of exponential lower bounds against deterministic SVN circuits. Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling circuits of size s with seed length (1+α)log s , under the assumption that there exists a function f ∈ E that requires randomized SVN circuits of size at least 2 (1-α′) n , where α = O (α)′. The construction uses, among other ideas, a new connection between pseudoentropy generators and locally list recoverable codes.

Funder

NSF

Simons Investigator Award

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Threshold Rates of Code Ensembles: Linear Is Best;IEEE Transactions on Information Theory;2024-07

2. Opening Up the Distinguisher: A Hardness to Randomness Approach for BPL=L That Uses Properties of BPL;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Explicit Codes for Poly-Size Circuits and Functions That Are Hard to Sample on Low Entropy Distributions;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Non-malleable Codes with Optimal Rate for Poly-Size Circuits;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3