Terminology-based knowledge mining for new knowledge discovery

Author:

Mima Hideki1,Ananiadou Sophia2,Matsushima Katsumori1

Affiliation:

1. School of Engineering, University of Tokyo, Tokyo, Japan

2. School of Informatics, University of Manchester, Manchester, UK

Abstract

In this article we present an integrated knowledge-mining system for the domain of biomedicine, in which automatic term recognition, term clustering, information retrieval, and visualization are combined. The primary objective of this system is to facilitate knowledge acquisition from documents and aid knowledge discovery through terminology-based similarity calculation and visualization of automatically structured knowledge. This system also supports the integration of different types of databases and simultaneous retrieval of different types of knowledge. In order to accelerate knowledge discovery, we also propose a visualization method for generating similarity-based knowledge maps. The method is based on real-time terminology-based knowledge clustering and categorization and allows users to observe real-time generated knowledge maps, graphically. Lastly, we discuss experiments using the GENIA corpus to assess the practicality and applicability of the system.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference25 articles.

1. Automatic terminology management in biomedicine. In Text Mining for Biology and Biomedicine, S. Ananiadou and J. McNaught (eds), Artech House, Norwood, MA;Ananiadou S.;Ch.,2006

2. Introduction: named entity recognition in biomedicine

3. Berners-Lee T. 1998. The Semantic Web as a language of logic. Available at: www.w3.org/DesignIssues/Logic.html.]] Berners-Lee T. 1998. The Semantic Web as a language of logic. Available at: www.w3.org/DesignIssues/Logic.html.]]

4. Brickle D. and Guha R. 2000. Resource description framework (RDF) schema specification 1.0 W3C Candidate Recommendation. Available at: http://www.w3.org/TR/rdf-schema.]] Brickle D. and Guha R. 2000. Resource description framework (RDF) schema specification 1.0 W3C Candidate Recommendation. Available at: http://www.w3.org/TR/rdf-schema.]]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3