A Model of Information Diffusion in Interconnected Online Social Networks

Author:

Gaeta Rossano1ORCID

Affiliation:

1. Università di Torino, Dipartimento di Informatica, Italy

Abstract

Online social networks (OSN) have today reached a remarkable capillary diffusion. There are numerous examples of very large platforms people use to communicate and maintain relationships. People also subscribe to several OSNs, e.g., people create accounts on Facebook, Twitter, and so on. This phenomenon leads to online social internetworking (OSI) scenarios where users who subscribe to multiple OSNs are termed as bridges . Unfortunately, several important features make the study of information propagation in an OSI scenario a difficult task, e.g., correlations in both the structural characteristics of OSNs and the bridge interconnections among them, heterogeneity and size of OSNs, activity factors, cross-posting propensity, and so on. In this article, we propose a directed random graph-based model that is amenable to efficient numerical solution to analyze the phenomenon of information propagation in an OSI scenario; in the model development, we take into account heterogeneity and correlations introduced by both topological (correlations among nodes degrees and among bridge distributions) and user-related factors (activity index, cross-posting propensity). We first validate the model predictions against simulations on snapshots of interconnected OSNs in a reference scenario. Subsequently, we exploit the model to show the impact on the information propagation of several characteristics of the reference scenario, i.e., size and complexity of the OSI scenario, degree distribution and overall number of bridges, growth and decline of OSNs in time, and time-varying cross-posting users propensity.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3