Sentiment-Focused Web Crawling

Author:

Vural A. Gural1,Cambazoglu B. Barla2,Karagoz Pinar1

Affiliation:

1. Middle East Technical University, Ankara, Turkey

2. Yahoo Labs, Barcelona, Spain

Abstract

Sentiments and opinions expressed in Web pages towards objects, entities, and products constitute an important portion of the textual content available in the Web. In the last decade, the analysis of such content has gained importance due to its high potential for monetization. Despite the vast interest in sentiment analysis, somewhat surprisingly, the discovery of sentimental or opinionated Web content is mostly ignored. This work aims to fill this gap and addresses the problem of quickly discovering and fetching the sentimental content present in the Web. To this end, we design a sentiment-focused Web crawling framework. In particular, we propose different sentiment-focused Web crawling strategies that prioritize discovered URLs based on their predicted sentiment scores. Through simulations, these strategies are shown to achieve considerable performance improvement over general-purpose Web crawling strategies in discovery of sentimental Web content.

Funder

Türkiye Bilimsel ve Teknolojik Arastirma Kurumu

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a Turkish UCCA dataset;Natural Language Processing;2024-08-27

2. Weakly supervised learning for an effective focused web crawler;Engineering Applications of Artificial Intelligence;2024-06

3. Amelioration of linguistic semantic classifier with sentiment classifier manacle for the focused web crawler;International Journal of Information Technology;2022-12-27

4. Building a Technology Recommender System Using Web Crawling and Natural Language Processing Technology;Algorithms;2022-08-03

5. An Overview of Methodologies and Challenges in Sentiment Analysis on Social Networks;Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3