Memory-access-aware Safety and Profitability Analysis for Transformation of Accelerator-bound OpenMP Loops

Author:

Chikin Artem1,Lloyd Taylor2,Amaral José Nelson3,Tiotto Ettore4,Usman Muhammad3

Affiliation:

1. Intel Corporation, Toronto, ON, Canada

2. Amazon, Seattle, WA, USA

3. University of Alberta, Edmonton, AB, Canada

4. IBM Canada, Markham, ON, Canada

Abstract

Iteration Point Difference Analysis is a new static analysis framework that can be used to determine the memory coalescing characteristics of parallel loops that target GPU offloading and to ascertain safety and profitability of loop transformations with the goal of improving their memory access characteristics. This analysis can propagate definitions through control flow, works for non-affine expressions, and is capable of analyzing expressions that reference conditionally defined values. This analysis framework enables safe and profitable loop transformations. Experimental results demonstrate potential for dramatic performance improvements. GPU kernel execution time across the Polybench suite is improved by up to 25.5× on an Nvidia P100 with benchmark overall improvement of up to 3.2×. An opportunity detected in a SPEC ACCEL benchmark yields kernel speedup of 86.5× with a benchmark improvement of 3.3×. This work also demonstrates how architecture-aware compilers improve code portability and reduce programmer effort.

Funder

Natural Sciences and Engineering Research Council of Canada

IBM Centre for Advanced Studies

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference34 articles.

1. ACF-Coalescing-LLVM 2019. ACF static analysis framework source-code. Retrieved from: https://github.com/uasys/ACF-Coalescing-LLVM. ACF-Coalescing-LLVM 2019. ACF static analysis framework source-code. Retrieved from: https://github.com/uasys/ACF-Coalescing-LLVM.

2. Utpal K. Banerjee. 1988. Dependence Analysis for Supercomputing. Kluwer Academic Publishers Norwell MA. Utpal K. Banerjee. 1988. Dependence Analysis for Supercomputing. Kluwer Academic Publishers Norwell MA.

3. A practical automatic polyhedral parallelizer and locality optimizer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3