Reward-Guided Synthesis of Intelligent Agents with Control Structures

Author:

Cui Guofeng1ORCID,Wang Yuning1ORCID,Qiu Wenjie1ORCID,Zhu He1ORCID

Affiliation:

1. Rutgers University, New Brunswick, USA

Abstract

Deep reinforcement learning (RL) has led to encouraging successes in numerous challenging robotics applications. However, the lack of inductive biases to support logic deduction and generalization in the representation of a deep RL model causes it less effective in exploring complex long-horizon robot-control tasks with sparse reward signals. Existing program synthesis algorithms for RL problems inherit the same limitation, as they either adapt conventional RL algorithms to guide program search or synthesize robot-control programs to imitate an RL model. We propose ReGuS, a reward-guided synthesis paradigm, to unlock the potential of program synthesis to overcome the exploration challenges. We develop a novel hierarchical synthesis algorithm with decomposed search space for loops, on-demand synthesis of conditional statements, and curriculum synthesis for procedure calls, to effectively compress the exploration space for long-horizon, multi-stage, and procedural robot-control tasks that are difficult to address by conventional RL techniques. Experiment results demonstrate that ReGuS significantly outperforms state-of-the-art RL algorithms and standard program synthesis baselines on challenging robot tasks including autonomous driving, locomotion control, and object manipulation.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable Reinforcement Learning Agents. In Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence.

2. Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning for bottom-up enumerative synthesis. Proc. ACM Program. Lang..

3. Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable Reinforcement Learning via Policy Extraction. In Advances in Neural Information Processing Systems, NeurIPS 2018.

4. Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of Obfuscated Code. In 26th USENIX Security Symposium, USENIX Security 2017.

5. James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing synthesis with metasketches. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3