Beyond Relevance: Factor-level Causal Explanation for User Travel Decisions with Counterfactual Data Augmentation

Author:

Li Hanzhe1ORCID,Gu Jingjing1ORCID,Lu Xinjiang2ORCID,Shen Dazhong3ORCID,Liu Yuting1ORCID,Deng YaNan1ORCID,Shi Guoliang1ORCID,Xiong Hui4ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Baidu Business Intelligence Lab, Baidu Research, Beijing, China

3. Shanghai Artificial Intelligence Laboratory, Shanghai, China

4. Thrust of Artificial Intelligence, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

Abstract

Point-of-Interest (POI) recommendation, an important research hotspot in the field of urban computing, plays a crucial role in urban construction. While understanding the process of users’ travel decisions and exploring the causality of POI choosing is not easy due to the complex and diverse influencing factors in urban travel scenarios. Moreover, the spurious explanations caused by severe data sparsity, i.e., misrepresenting universal relevance as causality, may also hinder us from understanding users’ travel decisions. To this end, in this article, we propose a factor-level causal explanation generation framework based on counterfactual data augmentation for user travel decisions, named Factor-level Causal Explanation for User Travel Decisions (FCE-UTD), which can distinguish between true and false causal factors and generate true causal explanations. Specifically, we first assume that a user decision is composed of a set of several different factors. Then, by preserving the user decision structure with a joint counterfactual contrastive learning paradigm, we learn the representation of factors and detect the relevant factors. Next, we further identify true causal factors by constructing counterfactual decisions with a counterfactual representation generator, in particular, it can not only augment the dataset and mitigate the sparsity but also contribute to clarifying the causal factors from other false causal factors that may cause spurious explanations. Besides, a causal dependency learner is proposed to identify causal factors for each decision by learning causal dependency scores. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our approach in terms of check-in rate, fidelity, and downstream tasks under different behavior scenarios. The extra case studies also demonstrate the ability of FCE-UTD to generate causal explanations in POI choosing.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3