Recycling trash in cache

Author:

Shidal Jonathan1,Spilo Ari J.1,Scheid Paul T.1,Cytron Ron K.1,Kavi Krishna M.2

Affiliation:

1. Washington University at St. Louis, USA

2. University of North Texas, USA

Abstract

The disparity between processing and storage speeds can be bridged in part by reducing the traffic into and out of the slower memory components. Some recent studies reduce such traffic by determining dead data in cache, showing that a significant fraction of writes can be squashed before they make the trip toward slower memory. In this paper, we examine a technique for eliminating traffic in the other direction, specifically the traffic induced by dynamic storage allocation. We consider recycling dead storage in cache to satisfy a program's storage-allocation requests. We first evaluate the potential for recycling under favorable circumstances, where the associated logic can run at full speed with no impact on the cache's normal behavior. We then consider a more practical implementation, in which the associated logic executes independently from the cache's critical path. Here, the cache's performance is unfettered by recycling, but the operations necessary to determine dead storage and recycle such storage execute as time is available. Finally, we present the design and analysis of a hardware implementation that scales well with cache size without sacrificing too much performance.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference30 articles.

1. A unified theory of garbage collection

2. Infant mortality and generational garbage collection

3. . URL http://doi.acm.org/10.1145/152739.152747. . URL http://doi.acm.org/10.1145/152739.152747.

4. A discussion on non-blocking/lockup-free caches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3