Productive coprogramming with guarded recursion

Author:

Atkey Robert1,McBride Conor2

Affiliation:

1. Contemplate Ltd., Edinburgh, United Kingdom

2. University of Strathclyde, Glasgow, United Kingdom

Abstract

Total functional programming offers the beguiling vision that, just by virtue of the compiler accepting a program, we are guaranteed that it will always terminate. In the case of programs that are not intended to terminate, e.g., servers, we are guaranteed that programs will always be productive . Productivity means that, even if a program generates an infinite amount of data, each piece will be generated in finite time. The theoretical underpinning for productive programming with infinite output is provided by the category theoretic notion of final coalgebras. Hence, we speak of co programming with non-well-founded co data, as a dual to programming with well-founded data like finite lists and trees. Systems that offer facilities for productive coprogramming, such as the proof assistants Coq and Agda, currently do so through syntactic guardedness checkers. Syntactic guardedness checkers ensure that all self-recursive calls are guarded by a use of a constructor. Such a check ensures productivity. Unfortunately, these syntactic checks are not compositional, and severely complicate coprogramming. Guarded recursion, originally due to Nakano, is tantalising as a basis for a flexible and compositional type-based approach to coprogramming. However, as we show, by itself, guarded recursion is not suitable for coprogramming due to the fact that there is no way to make finite observations on pieces of infinite data. In this paper, we introduce the concept of clock variables that index Nakano's guarded recursion. Clock variables allow us to "close over" the generation of infinite data, and to make finite observations, something that is not possible with guarded recursion alone.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Greatest HITs: Higher inductive types in coinductive definitions via induction under clocks;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

2. Two Guarded Recursive Powerdomains for Applicative Simulation;Electronic Proceedings in Theoretical Computer Science;2021-12-29

3. Polymorphic Iterable Sequential Effect Systems;ACM Transactions on Programming Languages and Systems;2021-03-31

4. Guarded Cubical Type Theory;Journal of Automated Reasoning;2018-06-26

5. Lewis meets Brouwer: Constructive strict implication;Indagationes Mathematicae;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3