RIPL

Author:

Stewart Robert1ORCID,Duncan Kirsty1,Michaelson Greg1,Garcia Paulo1,Bhowmik Deepayan2,Wallace Andrew1

Affiliation:

1. Heriot-Watt University, Edinburgh, UK

2. Sheffield Hallam University, Sheffield, UK

Abstract

Specialized FPGA implementations can deliver higher performance and greater power efficiency than embedded CPU or GPU implementations for real-time image processing. Programming challenges limit their wider use, because the implementation of FPGA architectures at the register transfer level is time consuming and error prone. Existing software languages supported by high-level synthesis (HLS), although providing a productivity improvement, are too general purpose to generate efficient hardware without the use of hardware-specific code optimizations. Such optimizations leak hardware details into the abstractions that software languages are there to provide, and they require knowledge of FPGAs to generate efficient hardware, such as by using language pragmas to partition data structures across memory blocks. This article presents a thorough account of the Rathlin image processing language (RIPL), a high-level image processing domain-specific language for FPGAs. We motivate its design, based on higher-order algorithmic skeletons, with requirements from the image processing domain. RIPL’s skeletons suffice to elegantly describe image processing stencils, as well as recursive algorithms with nonlocal random access patterns. At its core, RIPL employs a dataflow intermediate representation. We give a formal account of the compilation scheme from RIPL skeletons to static and cyclostatic dataflow models to describe their data rates and static scheduling on FPGAs. RIPL compares favorably to the Vivado HLS OpenCV library and C++ compiled with Vivado HLS. RIPL achieves between 54 and 191 frames per second (FPS) at 100MHz for four synthetic benchmarks, faster than HLS OpenCV in three cases. Two real-world algorithms are implemented in RIPL: visual saliency and mean shift segmentation. For the visual saliency algorithm, RIPL achieves 71 FPS compared to optimized C++ at 28 FPS. RIPL is also concise, being 5x shorter than C++ and 111x shorter than an equivalent direct dataflow implementation. For mean shift segmentation, RIPL achieves 7 FPS compared to optimized C++ on 64 CPU cores at 1.1, and RIPL is 10x shorter than the direct dataflow FPGA implementation.

Funder

EPSRC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3