Quantum Leap and Crash

Author:

Hurley-Smith Darren1ORCID,Hernandez-Castro Julio2

Affiliation:

1. Royal Holloway University of London, Egham Hil, Egham, Surrey

2. University of Kent, Canterbury, Kent

Abstract

Random numbers are essential for cryptography and scientific simulation. Generating truly random numbers for cryptography can be a slow and expensive process. Quantum physics offers a variety of promising solutions to this challenge, proposing sources of entropy that may be genuinely unpredictable, based on the inherent randomness of certain physical phenomena. These properties have been employed to design Quantum Random Number Generators (QRNGs), some of which are commercially available. In this work, we present the first published analysis of the Quantis family of QRNGs (excluding AIS-31 models), designed and manufactured by ID Quantique (IDQ). Our study also includes Comscire’s PQ32MU QRNG, and two online services: the Australian National University’s (ANU) QRNG, and the Humboldt Physik generator. Each QRNG is analysed using five batteries of statistical tests: Dieharder, National Institute of Standards and Technology (NIST) SP800-22, Ent, Tuftests and TestU01, as part of our thorough examination of their output. Our analysis highlights issues with current certification schemes, which largely rely on NIST SP800-22 and Diehard tests of randomness. We find that more recent tests of randomness identify issues in the output of QRNG, highlighting the need for mandatory post-processing even for low-security usage of random numbers sourced from QRNGs.

Funder

Engineering and Physical Sciences Research Council

Horizon 2020

ECOST

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference37 articles.

1. Quantum Random-number Generation and Key Sharing

2. Optical quantum random number generator;Stefanov André;Journal of Modern Optics,2000

3. Factoring RSA Keys from Certified Smart Cards: Coppersmith in the Wild

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3