Adaptive Hypermutation for Search-Based System Test Generation: A Study on REST APIs with EvoMaster

Author:

Zhang Man1,Arcuri Andrea2

Affiliation:

1. Kristiania University College, Oslo, Norway

2. Kristiania University College and Oslo Metropolitan University, Oslo, Norway

Abstract

REST web services are widely popular in industry, and search techniques have been successfully used to automatically generate system-level test cases for those systems. In this article, we propose a novel mutation operator which is designed specifically for test generation at system-level, with a particular focus on REST APIs. In REST API testing, and often in system testing in general, an individual can have a long and complex chromosome. Furthermore, there are two specific issues: (1) fitness evaluation in system testing is highly costly compared with the number of objectives (e.g., testing targets) to optimize for; and (2) a large part of the genotype might have no impact on the phenotype of the individuals (e.g., input data that has no impact on the execution flow in the tested program). Due to these issues, it might be not suitable to apply a typical low mutation rate like 1/ n (where n is the number of genes in an individual), which would lead to mutating only one gene on average. Therefore, in this article, we propose an adaptive weight-based hypermutation, which is aware of the different characteristics of the mutated genes. We developed adaptive strategies that enable the selection and mutation of genes adaptively based on their fitness impact and mutation history throughout the search. To assess our novel proposed mutation operator, we implemented it in the EvoMaster tool, integrated in the MIO algorithm, and further conducted an empirical study with three artificial REST APIs and four real-world REST APIs. Results show that our novel mutation operator demonstrates noticeable improvements over the default MIO. It provides a significant improvement in performance for six out of the seven case studies, where the relative improvement is up to +12.09% for target coverage, +12.69% for line coverage, and +32.51% for branch coverage.

Funder

Research Council of Norway

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference67 articles.

1. A Systematic Review of the Application and Empirical Investigation of Search-Based Test Case Generation

2. An experience report on applying software testing academic results in industry: We need usable automated test generation;Arcuri Andrea;Empirical Software Engineering,2017

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced White-Box Heuristics for Search-Based Fuzzing of REST APIs;ACM Transactions on Software Engineering and Methodology;2024-06-27

2. KAT: Dependency-Aware Automated API Testing with Large Language Models;2024 IEEE Conference on Software Testing, Verification and Validation (ICST);2024-05-27

3. Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs;ACM Transactions on the Web;2024-01-05

4. RESTlogic: Detecting Logic Vulnerabilities in Cloud REST APIs;Computers, Materials & Continua;2024

5. An Approach to Generating API Test Scripts Using GPT;Proceedings of the 12th International Symposium on Information and Communication Technology;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3