The Use of Deep Learning in the Diagnosis and Prediction of Heart Failure: A scoping review
Author:
Affiliation:
1. College of Science and Engineering, Hamad Bin Khalifa University, Qatar and National Center for Cancer Care and Research, Hamad Medical Corporation, Qatar
2. College of Science and Engineering, Hamad Bin Khalifa University, Qatar
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3673971.3673973
Reference19 articles.
1. Castiglione V. Aimo A. Vergaro G. Saccaro L. Passino C. and Emdin M. 2022. Biomarkers for the diagnosis and management of heart failure. Heart failure reviews pp.1-19.
2. Intelligent Framework for Prediction of Heart Disease using Deep Learning
3. Rasmya L Wu Y Wang N Geng X Zheng WJ Wang F Wu H Xu H Zhi D. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J Biomed Inform. 2018 Aug;84:11-16. doi: 10.1016/j.jbi.2018.06.011. Epub 2018 Jun 15. PMID: 29908902; PMCID: PMC6076336.Sam Anzaroot and Andrew McCallum. 2013. UMass Citation Field Extraction Dataset. Retrieved May 27 2019 from http://www.iesl.cs.umass.edu/data/data-umasscitationfield
4. Ngo, L.H. (2019). Using a Deep Learning Network to Diagnose Congestive Heart Failure. Radiology, 290 2, 523-524Chelsea Finn. 2018. Learning to Learn with Gradients. PhD Thesis, EECS Department, University of Berkeley.
5. Bian P Zhang X Liu R Li H Zhang Q Dai B. Deep-Learning-Based Color Doppler Ultrasound Image Feature in the Diagnosis of Elderly Patients with Chronic Heart Failure Complicated with Sarcopenia. J Healthc Eng. 2021 Jul 29;2021:2603842. doi: 10.1155/2021/2603842. PMID: 34367535; PMCID: PMC8346313.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3