Data-Driven Frequency-Based Airline Profit Maximization

Author:

An Bo1,Chen Haipeng1ORCID,Park Noseong2,Subrahmanian V. S.3

Affiliation:

1. Nanyang Technological University, Nanyang Avenue, Singapore

2. University of North Carolina, Charlotte

3. University of Maryland

Abstract

Although numerous traditional models predict market share and demand along airline routes, the prediction of existing models is not precise enough, and to the best of our knowledge, there is no use of data mining--based forecasting techniques for improving airline profitability. We propose the maximizing airline profits (MAP) architecture designed to help airlines and make two key contributions in airline market share and route demand prediction and prediction-based airline profit optimization. Compared to past methods used to forecast market share and demand along airline routes, we introduce a novel ensemble forecasting (MAP-EF) approach considering two new classes of features: (i) features derived from clusters of similar routes and (ii) features based on equilibrium pricing. We show that MAP-EF achieves much better Pearson correlation coefficients (greater than 0.95 vs. 0.82 for market share, 0.98 vs. 0.77 for demand) and R 2 -values compared to three state-of-the-art works for forecasting market share and demand while showing much lower variance. Using the results of MAP-EF, we develop MAP--bilevel branch and bound (MAP-BBB) and MAP-greedy (MAP-G) algorithms to optimally allocate flight frequencies over multiple routes to maximize an airline’s profit. We also study two extensions of the profit maximization problem considering frequency constraints and long-term profits. Furthermore, we develop algorithms for computing Nash equilibrium frequencies when there are multiple strategic airlines. Experimental results show that airlines can increase profits by a significant margin. All experiments were conducted with data aggregated from four sources: the U.S. Bureau of Transportation Statistics (BTS), the U.S. Bureau of Economic Analysis (BEA), the National Transportation Safety Board (NTSB), and the U.S. Census Bureau (CB).

Funder

National Research Foundation

Prime Minister's Office, Singapore

IDM Futures Funding Initiative

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference30 articles.

1. The role of wealth in the demand for international air travel;Alperovich Gershon;Journal of Transport Economics and Policy,1994

2. MAP

3. Structure and dynamics of the core US air travel markets: A basic empirical analysis of domestic passenger demand

4. Air Travel by State

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possibilities of Using Predictive Analytics in the Aviation Industry - Case Study;2023 New Trends in Aviation Development (NTAD);2023-11-23

2. Service-oriented container slot allocation policy under stochastic demand;Transportation Research Part B: Methodological;2023-10

3. The airline seat capacity allocation problem: An expected marginal profit approach;Journal of Air Transport Management;2023-09

4. Airline Ticket Price Forecasting Using Time Series Model;ICT with Intelligent Applications;2023

5. Prediction-based One-shot Dynamic Parking Pricing;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3