A Deep Learning–based PPG Quality Assessment Approach for Heart Rate and Heart Rate Variability

Author:

Naeini Emad Kasaeyan1ORCID,Sarhaddi Fatemeh2ORCID,Azimi Iman2ORCID,Liljeberg Pasi2ORCID,Dutt Nikil1ORCID,Rahmani Amir M.1ORCID

Affiliation:

1. University of California Irvine, USA

2. University of Turku, Finland

Abstract

Photoplethysmography (PPG) is a non-invasive optical method to acquire various vital signs, including heart rate (HR) and heart rate variability (HRV). The PPG method is highly susceptible to motion artifacts and environmental noise. Unfortunately, such artifacts are inevitable in ubiquitous health monitoring, as the users are involved in various activities in their daily routines. Such low-quality PPG signals negatively impact the accuracy of the extracted health parameters, leading to inaccurate decision-making. PPG-based health monitoring necessitates a quality assessment approach to determine the signal quality according to the accuracy of the health parameters. Different studies have thus far introduced PPG signal quality assessment methods, exploiting various indicators and machine learning algorithms. These methods differentiate reliable and unreliable signals, considering morphological features of the PPG signal and focusing on the cardiac cycles. Therefore, they can be utilized for HR detection applications. However, they do not apply to HRV, as only having an acceptable shape is insufficient, and other signal factors may also affect the accuracy. In this article, we propose a deep learning–based PPG quality assessment method for HR and various HRV parameters. We employ one customized one-dimensional (1D) and three 2D Convolutional Neural Networks (CNN) to train models for each parameter. Reliability of each of these parameters will be evaluated against the corresponding electrocardiogram signal, using 210 hours of data collected from a home-based health monitoring application. Our results show that the proposed 1D CNN method outperforms the other 2D CNN approaches. Our 1D CNN model obtains the accuracy of 95.63%, 96.71%, 91.42%, 94.01%, and 94.81% for the HR, average of normal to normal interbeat (NN) intervals, root mean square of successive NN interval differences, standard deviation of NN intervals, and ratio of absolute power in low frequency to absolute power in high frequency ratios, respectively. Moreover, we compare the performance of our proposed method with state-of-the-art algorithms. We compare our best models for HR-HRV health parameters with six different state-of-the-art PPG signal quality assessment methods. Our results indicate that the proposed method performs better than the other methods. We also provide the open source model implemented in Python for the community to be integrated into their solutions.

Funder

US National Science Foundation

Academy of Finland

SLIM

Publisher

Association for Computing Machinery (ACM)

Subject

Health Information Management,Health Informatics,Computer Science Applications,Biomedical Engineering,Information Systems,Medicine (miscellaneous),Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time intelligent on-device monitoring of heart rate variability with PPG sensors;Journal of Systems Architecture;2024-09

2. On the Performance of Composite 1D-to-2D Projections for Signal Quality Assessment;Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2024);2024-06-25

3. A Review of Key Technologies for Emotion Analysis Using Multimodal Information;Cognitive Computation;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3