A Hough-transform-based anomaly detector with an adaptive time interval

Author:

Fontugne Romain1,Fukuda Kensuke2

Affiliation:

1. The Graduate University for Advanced Studies, Tokyo, Japan

2. National Institute of Informatics, Tokyo, Japan

Abstract

Internet traffic anomalies are a serious problem that compromises the availability of optimal network resources. Numerous anomaly detectors have recently been proposed, but maintaining their parameters optimally tuned is a difficult task that discredits their effectiveness for daily usage. This article proposes a new anomaly detection method based on pattern recognition and investigates the relationship between its parameter set and the traffic characteristics. This analysis highlights that constantly achieving a high detection rate requires continuous adjustments to the parameters according to the traffic fluctuations. Therefore, an adaptive time interval mechanism is proposed to enhance the robustness of the detection method to traffic variations. This adaptive anomaly detection method is evaluated by comparing it to three other anomaly detectors using four years of real backbone traffic. The evaluation reveals that the proposed adaptive detection method outperforms the other methods in terms of the true positive and false positive rate.

Publisher

Association for Computing Machinery (ACM)

Reference19 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3