FusE

Author:

Thoma Steffen1,Thalhammer Andreas1,Harth Andreas2,Studer Rudi1

Affiliation:

1. Institute AIFB, Karlsruhe Institute of Technology (KIT), Postfach, Karlsruhe

2. Chair of Technical Information Systems, Friedrich-Alexander-University Erlangen-Nuremberg and Fraunhofer IIS-SCS, Nuremberg, Lange Gasse, Nürnberg

Abstract

Many current web pages include structured data which can directly be processed and used. Search engines, in particular, gather that structured data and provide question answering capabilities over the integrated data with an entity-centric presentation of the results. Due to the decentralized nature of the web, multiple structured data sources can provide similar information about an entity. But data from different sources may involve different vocabularies and modeling granularities, which makes integration difficult. We present FusE, an approach that identifies similar entity-specific data across sources, independent of the vocabulary and data modeling choices. We apply our method along the scenario of a trustable knowledge panel, conduct experiments in which we identify and process entity data from web sources, and compare the output to a competing system. The results underline the advantages of the presented entity-centric data fusion approach.

Funder

European Union Seventh Framework Programme

German Federal Ministry of Education and Research

Marie Curie International Research Staff Exchange Scheme

Software Campus project “SumOn”

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference48 articles.

1. The first joint international workshop on entity-oriented and semantic search (JIWES)

2. Tim Berners-Lee. 2006. Linked Data. Retrieved on February 7 2019 from https://www.w3.org/DesignIssues/LinkedData.html. Tim Berners-Lee. 2006. Linked Data. Retrieved on February 7 2019 from https://www.w3.org/DesignIssues/LinkedData.html.

3. A new look at the semantic web

4. Freebase

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3