Parallel QR Factorization of Block Low-rank Matrices

Author:

Apriansyah M. Ridwan1ORCID,Yokota Rio2ORCID

Affiliation:

1. School of Computing, Tokyo Institute of Technology, Meguro, Tokyo, Japan

2. Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguro, Tokyo, Japan

Abstract

We present two new algorithms for Householder QR factorization of Block Low-Rank (BLR) matrices: one that performs block-column-wise QR and another that is based on tiled QR. We show how the block-column-wise algorithm exploits BLR structure to achieve arithmetic complexity of 𝒪( mn ), while the tiled BLR-QR exhibits 𝒪( mn 1.5 complexity. However, the tiled BLR-QR has finer task granularity that allows parallel task-based execution on shared memory systems. We compare the block-column-wise BLR-QR using fork-join parallelism with tiled BLR-QR using task-based parallelism. We also compare these two implementations of Householder BLR-QR with a block-column-wise Modified Gram–Schmidt (MGS) BLR-QR using fork-join parallelism and a state-of-the-art vendor-optimized dense Householder QR in Intel MKL. For a matrix of size 131k × 65k, all BLR methods are more than an order of magnitude faster than the dense QR in MKL. Our methods are also robust to ill conditioning and produce better orthogonal factors than the existing MGS-based method. On a CPU with 64 cores, our parallel tiled Householder and block-column-wise Householder algorithms show a speedup of 50 and 37 times, respectively.

Funder

JSPS KAKENHI

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

High Performance Computing Infrastructure

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient randomized QLP algorithm for approximating the singular value decomposition;Information Sciences;2023-11

2. QR Factorization of Block Low-Rank Matrices on Multi-instance GPU;Parallel and Distributed Computing, Applications and Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3