Deep Transfer Learning for Cross-domain Activity Recognition

Author:

Wang Jindong1,Zheng Vincent W.2,Chen Yiqiang1,Huang Meiyu3

Affiliation:

1. Institute of Computing Technology, CAS, Beijing, China

2. Advanced Digital Sciences Center, Singapore

3. Qian Xuesen Laboratory of Space Technology, CAST, Beijing, China

Publisher

ACM Press

Reference48 articles.

1. Billur Barshan and Murart. Cihan Yüksek. 2014. Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. Comput. J. 57, 11 (2014), 1649--1667.

2. Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2007. Analysis of representations for domain adaptation. In Advances in neural information processing systems. 137--144.

3. Himanshu S Bhatt, Arun Rajkumar, and Shourya Roy. 2016. Multi-Source Iterative Adaptation for Cross-Domain Classification.. In IJCAI. 3691--3697.

4. John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In Proceedings of the 2006 conference on empirical methods in natural language processing. Association for Computational Linguistics, 120--128.

5. Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, and Alex J Smola. 2006. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22, 14 (2006), e49--e57.

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human action recognition using ST-GCNs for blind accessible theatre performances;Signal, Image and Video Processing;2024-09-04

2. DW-D 3 A: dynamic weighted dual-driven domain adaptation for cross-scene hyperspectral image classification;International Journal of Remote Sensing;2024-07

3. Cross-Domain Activity Recognition Based on Stacked Transfer Network;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Comparison of fine-tuning strategies for transfer learning in medical image classification;Image and Vision Computing;2024-06

5. CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3