Expressive Cognitive Architecture for a Curious Social Robot

Author:

Rosenberg Maor1,Park Hae Won2,Rosenberg-Kima Rinat3,Ali Safinah2,Ostrowski Anastasia K.2,Breazeal Cynthia2,Gordon Goren1ORCID

Affiliation:

1. Curiosity Lab, Industrial Engineering Department, Tel-Aviv University, Israel

2. Personal Robots Group, MIT Media Lab, Cambridge, Massachusetts, United States

3. Faculty of Education in Science and Technology, Technion, Israel

Abstract

Artificial curiosity, based on developmental psychology concepts wherein an agent attempts to maximize its learning progress, has gained much attention in recent years. Similarly, social robots are slowly integrating into our daily lives, in schools, factories, and in our homes. In this contribution, we integrate recent advances in artificial curiosity and social robots into a single expressive cognitive architecture. It is composed of artificial curiosity and social expressivity modules and their unique link, i.e., the robot verbally and non-verbally communicates its internally estimated learning progress, or learnability, to its human companion. We implemented this architecture in an interaction where a fully autonomous robot took turns with a child trying to select and solve tangram puzzles on a tablet. During the curious robot’s turn, it selected its estimated most learnable tangram to play, communicated its selection to the child, and then attempted at solving it. We validated the implemented architecture and showed that the robot learned, estimated its learnability, and improved when its selection was based on its learnability estimation. Moreover, we ran a comparison study between curious and non-curious robots, and showed that the robot’s curiosity-based behavior influenced the child’s selections. Based on the artificial curiosity module of the robot, we have formulated an equation that estimates each child’s moment-by-moment curiosity based on their selections. This analysis revealed an overall significant decrease in estimated curiosity during the interaction. However, this drop in estimated curiosity was significantly larger with the non-curious robot, compared to the curious one. These results suggest that the new architecture is a promising new approach to integrate state-of-the-art curiosity-based algorithms to the growing field of social robots.

Funder

National Institutes of Health

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3