Affiliation:
1. Cairo University, Giza, Egypt
2. The American University in Cairo
Abstract
Stemming is a key step in most text mining and information retrieval applications. Information extraction, semantic annotation, as well as ontology learning are but a few examples where using a stemmer is a must. While the use of light stemmers in Arabic texts has proven highly effective for the task of information retrieval, this class of stemmers falls short of providing the accuracy required by many text mining applications. This can be attributed to the fact that light stemmers employ a set of rules that they apply indiscriminately and that they do not address stemming of broken plurals at all, even though this class of plurals is very commonly used in Arabic texts. The goal of this work is to overcome these limitations. The evaluation of the work shows that it significantly improves stemming accuracy. It also shows that by improving stemming accuracy, tasks such as automatic annotation and keyphrase extraction can also be significantly improved.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献