METEOR

Author:

Bahirat Shirish1,Pasricha Sudeep1

Affiliation:

1. Colorado State University, Fort Collins, CO

Abstract

With increasing application complexity and improvements in process technology, Chip MultiProcessors (CMPs) with tens to hundreds of cores on a chip are becoming a reality. Networks-on-Chip (NoCs) have emerged as scalable communication fabrics that can support high bandwidths for these massively parallel multicore systems. However, traditional electrical NoC implementations still need to overcome the challenges of high data transfer latencies and large power consumption. On-chip photonic interconnects with high performance-per-watt characteristics have recently been proposed as an alternative to address these challenges for intra-chip communication. In this article, we explore using low-cost photonic interconnects on a chip to enhance traditional electrical NoCs. Our proposed hybrid photonic ring-mesh NoC (METEOR) utilizes a configurable photonic ring waveguide coupled to a traditional 2D electrical mesh NoC. Experimental results indicate a strong motivation to consider the proposed architecture for future CMPs, as it can provide about 5× reduction in power consumption and improved throughput and access latencies, compared to traditional electrical 2D mesh and torus NoC architectures. Compared to other previously proposed hybrid photonic NoC fabrics such as the hybrid photonic torus, Corona, and Firefly, our proposed fabric is also shown to have lower photonic area overhead, power consumption, and energy-delay product, while maintaining competitive throughput and latency.

Funder

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Sparsity Optimized Photonic Deep Learning Accelerators;Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing;2023-10-10

2. Co-designing Photonic Accelerators for Machine Learning on the Edge;Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing;2023-10-10

3. Light Speed Machine Learning Inference on the Edge;Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing;2023-10-01

4. Silicon Photonics for Future Computing Systems;Wiley Encyclopedia of Electrical and Electronics Engineering;2022-05-12

5. Photonic Networks-on-Chip Employing Multilevel Signaling: A Cross-Layer Comparative Study;ACM Journal on Emerging Technologies in Computing Systems;2022-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3