A Survey on Hypergraph Representation Learning
Author:
Affiliation:
1. Università degli Studi di Torino, Italy
2. Università della Campania “Luigi Vanvitelli”, Italy
3. Università degli Studi di Salerno, Italy
4. University of Macau, Macau SAR, China, China
Abstract
Funder
spoke “FutureHPC & BigData” of the ICSC–Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing funded by European Union–NextGenerationEU, University of Macau
Science and Technology Development Fund, Macau SAR
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Link
https://dl.acm.org/doi/pdf/10.1145/3605776
Reference198 articles.
1. S. Agarwal, K. Branson, and S. Belongie. 2006. Higher order learning with graphs. In Proc. of the 23rd Int. Conf. on Machine Learning. ACM, 17–24.
2. Hypernetwork science via high-order hypergraph walks;Aksoy S. G.;EPJ Data Science,2020
3. A. Antelmi, G. Cordasco, B. Kamiński, P. Prałat, V. Scarano, C. Spagnuolo, and P. Szufel. 2019. SimpleHypergraphs.jl—Novel software framework for modelling and analysis of hypergraphs. In Algorithms and Models for the Web Graph. Springer International Publishing, Cham, 115–129.
4. Analyzing, exploring, and visualizing complex networks via hypergraphs using simplehypergraphs.jl;Antelmi A.;Internet Mathematics,2020
5. A. Antelmi, G. Cordasco, C. Spagnuolo, and V. Scarano. 2020. A design-methodology for epidemic dynamics via time-varying hypergraphs. In Proc. of the 19th Int. Conf. on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, 61–69.
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Clean affinity matrix induced hyper-Laplacian regularization for unsupervised multi-view feature selection;Information Sciences;2024-11
2. GHOST: Graph-based higher-order similarity transformation for classification;Pattern Recognition;2024-11
3. HHGNN: Hyperbolic Hypergraph Convolutional Neural Network based on variational autoencoder;Neurocomputing;2024-10
4. HGDO: An oversampling technique based on hypergraph recognition and Gaussian distribution;Information Sciences;2024-09
5. Developing a novel approach in estimating urban commute traffic by integrating community detection and hypergraph representation learning;Expert Systems with Applications;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3