Location-based social simulation for prescriptive analytics of disease spread

Author:

Kim Joon-Seok1,Kavak Hamdi1,Rouly Chris Ovi2,Jin Hyunjee1,Crooks Andrew1,Pfoser Dieter1,Wenk Carola2,Züfle Andreas1

Affiliation:

1. George Mason University

2. Tulane University

Abstract

Human mobility and social networks have received considerable attention from researchers in recent years. What has been sorely missing is a comprehensive data set that not only addresses geometric movement patterns derived from trajectories, but also provides social networks and causal links as to why movement happens in the first place. To some extent, this challenge is addressed by studying location-based social networks (LBSNs). However, the scope of real-world LBSN data sets is constrained by privacy concerns, a lack of authoritative ground-truth, their sparsity, and small size. To overcome these issues we have infused a novel geographically explicit agent-based simulation framework to simulate human behavior and to create synthetic but realistic LBSN data based on human patterns-of-life (i.e., a geo-social simulation). Such data not only captures the location of users over time, but also their motivation, and interactions via temporal social networks. We have open sourced our framework and released a set of large data sets for the SIGSPATIAL community. In order to showcase the versatility of our simulation framework, we added disease a model that simulates an outbreak and allows us to test different policy measures such as implementing mandatory mask use and various social distancing measures. The produced data sets are massive and allow us to capture 100% of the (simulated) population over time without any data uncertainty, privacy-related concerns, or incompleteness. It allows researchers to see the (simulated) world through the lens of an omniscient entity having perfect data.

Publisher

Association for Computing Machinery (ACM)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Silico Human Mobility Data Science: Leveraging Massive Simulated Mobility Data (Vision Paper);ACM Transactions on Spatial Algorithms and Systems;2024-06-30

2. HumoNet: A Framework for Realistic Modeling and Simulation of Human Mobility Network;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

3. Analyzing Derived Network Feature Importance to Identify Location Influence in LBSN;2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS);2023-11-21

4. Epidemic Spread Modeling for COVID-19 Using Cross-Fertilization of Mobility Data;IEEE Transactions on Big Data;2023-10

5. Introduction to the Special Issue on Understanding the Spread of COVID-19, Part 2;ACM Transactions on Spatial Algorithms and Systems;2022-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3