Profile guided code positioning

Author:

Pettis Karl1,Hansen Robert C.1

Affiliation:

1. Hewlett-Packard Company, California Language Laboratory, 19447 Pruneridge Avenue, Cupertino, California

Abstract

This paper presents the results of our investigation of code positioning techniques using execution profile data as input into the compilation process. The primary objective of the positioning is to reduce the overhead of the instruction memory hierarchy. After initial investigation in the literature, we decided to implement two prototypes for the Hewlett-Packard Precision Architecture (PA-RISC). The first, built on top of the linker, positions code based on whole procedures. This prototype has the ability to move procedures into an order that is determined by a “closest is best” strategy. The second prototype, built on top of an existing optimizer package, positions code based on basic blocks within procedures. Groups of basic blocks that would be better as straight-line sequences are identified as chains . These chains are then ordered according to branch heuristics. Code that is never executed during the data collection runs can be physically separated from the primary code of a procedure by a technique we devised called procedure splitting . The algorithms we implemented are described through examples in this paper. The performance improvements from our work are also summarized in various tables and charts.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GraalSP: Polyglot, efficient, and robust machine learning-based static profiler;Journal of Systems and Software;2024-07

2. Warming Up a Cold Front-End with Ignite;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

3. Protean: Resource-efficient Instruction Prefetching;Proceedings of the International Symposium on Memory Systems;2023-10-02

4. Online Code Layout Optimizations via OCOLOS;IEEE Micro;2023-07

5. It’s like flossing your teeth: On the Importance and Challenges of Reproducible Builds for Software Supply Chain Security;2023 IEEE Symposium on Security and Privacy (SP);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3