ReVibe

Author:

Rabbi Mashfiqui1,Li Katherine2,Yan H. Yanna2,Hall Kelly3,Klasnja Predrag2,Murphy Susan1

Affiliation:

1. Harvard University, Cambridge, MA, USA

2. University of Michigan, Ann Arbor, MI, USA

3. Yale University, Ann Arbor, MI, USA

Abstract

Besides passive sensing, ecological momentary assessments (EMAs) are one of the primary methods to collect in-the-moment data in ubiquitous computing and mobile health. While EMAs have the advantage of low recall bias, a disadvantage is that they frequently interrupt the user and thus long-term adherence is generally poor. In this paper, we propose a less-disruptive self-reporting method, "assisted recall," in which in the evening individuals are asked to answer questions concerning a moment from earlier in the day assisted by contextual information such as location, physical activity, and ambient sounds collected around the moment to be recalled. Such contextual information is automatically collected from phone sensor data, so that self-reporting does not require devices other than a smartphone. We hypothesized that providing assistance based on such automatically collected contextual information would increase recall accuracy (i.e., if recall responses for a moment match the EMA responses at the same moment) as compared to no assistance, and we hypothesized that the overall completion rate of evening recalls (assisted or not) would be higher than for in-the-moment EMAs. We conducted a two-week study (N=54) where participants completed recalls and EMAs each day. We found that providing assistance via contextual information increased recall accuracy by 5.6% (p = 0.032) and the overall recall completion rate was on average 27.8% (p < 0.001) higher than that of EMAs.

Funder

NHLBI/NIA

Michigan Institute for Data Science

NIDA

NIAAA

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3