Centralized and distributed task allocation in multi-robot teams via a stochastic clustering auction

Author:

Zhang Kai1,Collins Emmanuel G.1,Shi Dongqing2

Affiliation:

1. Florida A&M University-Florida State University, Tallahassee, FL

2. Dartmouth College, Hanover, NH

Abstract

This article considers the problem of optimal task allocation for heterogeneous teams, for example, teams of heterogeneous robots or human-robot teams. It is well-known that this problem is NP-hard and hence computationally feasible approaches must develop an approximate solution. Here, we propose a solution via a Stochastic Clustering Auction (SCA) that uses a Markov chain search process along with simulated annealing. This is the first stochastic auction method used in conjunction with global optimization. It is based on stochastic transfer and swap moves between the clusters of tasks assigned to the various robots and considers not only downhill movements, but also uphill movements, which can avoid local minima. A novel feature of this algorithm is that, by tuning the annealing suite and turning the uphill movements on and off, the global team performance after algorithm convergence can slide in the region between the global optimal performance and the performance associated with a random allocation. Extensive numerical experiments are used to evaluate the performance of SCA in terms of costs and computational and communication requirements. For centralized auctioning, the SCA algorithm is compared to fast greedy auction algorithms. Distributed auctioning is then compared with centralized SCA.

Funder

Army Research Office

U.S. Army Research Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3