High-performance complex event processing over hierarchical data

Author:

Mozafari Barzan1,Zeng Kai2,D'antoni Loris3,Zaniolo Carlo2

Affiliation:

1. Massachusetts Institute of Technology

2. University of California, Los Angeles

3. University of Pennsylvania

Abstract

While Complex Event Processing (CEP) constitutes a considerable portion of the so-called Big Data analytics, current CEP systems can only process data having a simple structure, and are otherwise limited in their ability to efficiently support complex continuous queries on structured or semistructured information. However, XML-like streams represent a very popular form of data exchange, comprising large portions of social network and RSS feeds, financial feeds, configuration files, and similar applications requiring advanced CEP queries. In this article, we present the XSeq language and system that support CEP on XML streams, via an extension of XPath that is both powerful and amenable to an efficient implementation. Specifically, the XSeq language extends XPath with natural operators to express sequential and Kleene-* patterns over XML streams, while remaining highly amenable to efficient execution. In fact, XSeq is designed to take full advantage of the recently proposed Visibly Pushdown Automata (VPA), where higher expressive power can be achieved without compromising the computationally attractive properties of finite state automata. Besides the efficiency and expressivity benefits, the choice of VPA as the underlying model also enables XSeq to go beyond XML streams and be easily applicable to any data with both sequential and hierarchical structures, including JSON messages, RNA sequences, and software traces. Therefore, we illustrate the XSeq's power for CEP applications through examples from different domains and provide formal results on its expressiveness and complexity. Finally, we present several optimization techniques for XSeq queries. Our extensive experiments indicate that XSeq brings outstanding performance to CEP applications: two orders of magnitude improvement is obtained over the same queries executed in general-purpose XML engines.

Funder

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3