NUCA-L1

Author:

Hijaz Farrukh1,Khan Omer1

Affiliation:

1. University of Connecticut, Storrs, CT

Abstract

Research has shown that operating in the near-threshold region is expected to provide up to 10× energy efficiency for future processors. However, reliable operation below a minimum voltage (Vccmin) cannot be guaranteed due to process variations. Because SRAM margins can easily be violated at near-threshold voltages, their bit-cell failure rates are expected to rise steeply. Multicore processors rely on fast private L1 caches to exploit data locality and achieve high performance. In the presence of high bit-cell fault rates, traditionally an L1 cache either sacrifices capacity or incurs additional latency to correct the faults. We observe that L1 cache sensitivity to hit latency offers a design trade-off between capacity and latency. When fault rate is high at extreme Vccmin, it is beneficial to recover L1 cache capacity, even if it comes at the cost of additional latency. However, at low fault rates, the additional constant latency to recover cache capacity degrades performance. With this trade-off in mind, we propose a Non-Uniform Cache Access L1 architecture (NUCA-L1) that avoids additional latency on accesses to fault-free cache lines. To mitigate the capacity bottleneck, it deploys a correction mechanism to recover capacity at the cost of additional latency. Using extensive simulations of a 64-core multicore, we demonstrate that at various bit-cell fault rates, our proposed private NUCA-L1 cache architecture performs better than state-of-the-art schemes, along with a significant reduction in energy consumption.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TS Cache: A Fast Cache With Timing-Speculation Mechanism Under Low Supply Voltages;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2020-01

2. Dynamic Associativity Management in Tiled CMPs by Runtime Adaptation of Fellow Sets;IEEE Transactions on Parallel and Distributed Systems;2017-08-01

3. Designing a Resilient L1 Cache Architecture to Process Variation-Induced Access-Time Failures;IEEE Transactions on Computers;2016-10-01

4. DPCS;ACM Transactions on Architecture and Code Optimization;2015-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3