Chiller

Author:

Zamanian Erfan1,Shun Julian2,Binnig Carsten3,Kraska Tim2

Affiliation:

1. Brown University

2. MIT CSAIL

3. TU Darmstadt

Abstract

Distributed transactions on high-overhead TCP/IP-based networks were conventionally considered to be prohibitively expensive. In fact, the primary goal of existing partitioning schemes is to minimize the number of cross-partition transactions. However, with the new generation of fast RDMAenabled networks, this assumption is no longer valid. In this paper, we first make the case that the new bottleneck which hinders truly scalable transaction processing in modern RDMA-enabled databases is data contention, and that optimizing for data contention leads to different partitioning layouts than optimizing for the number of distributed transactions. We then present Chiller, a new approach to data partitioning and transaction execution, which aims to minimize data contention for both local and distributed transactions.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference18 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CATS: A Computation-Aware Transaction Processing System with Proactive Unlocking;2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS);2023-06-19

2. Design Guidelines for Correct, Efficient, and Scalable Synchronization using One-Sided RDMA;Proceedings of the ACM on Management of Data;2023-06-13

3. EFA: A Viable Alternative to RDMA over InfiniBand for DBMSs?;Data Management on New Hardware;2022-06-12

4. ScaleStore: A Fast and Cost-Efficient Storage Engine using DRAM, NVMe, and RDMA;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

5. Competitive Consistent Caching for Transactions;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3