Edge-Light: Exploiting Luminescent Solar Concentrators for Ambient Light Communication

Author:

Tapia Miguel A. Chávez1ORCID,Rodríguez Diego Palma2ORCID,Zamalloa Marco Zúñiga1ORCID

Affiliation:

1. Delft University of Technology, Delft, The Netherlands

2. Universidad de Ingeniería y Tecnología - UTEC, Lima, Perú

Abstract

A recent advance in embedded Internet of Things (IoT) exploits ambient light for wireless communication. This new paradigm enables highly efficient links via simple light modulation, but the design space has a fundamental constraint: in most State of the Art (SoA) studies, the link can only follow the propagation direction of ambient light. Consider, for example, a swarm of drones and ground robots that want to communicate with sunlight. Drone-to-robot communication could be possible because sunlight travels downwards from the air (drone) to the ground (robot), allowing drones to modulate light to send information to robots beneath them. Robot-to-robot communication, however, is not possible because sunlight does not travel sideways (parallel to the ground). To allow 'lateral communication' with ambient light, we propose using Luminescent Solar Concentrators (LSC). These optical components receive ambient light on their surface and re-direct part of the spectra towards their edges. Considering this optical property of LSC, our work has three main contributions. First, we benchmark various optical properties of LSC to assess their performance for ambient light communication. Second, we combine LSC with liquid crystal (LC) shutters to form lateral links with ambient light. Third, we test our links indoors and outdoors with artificial and natural ambient light, by enhancing two robots with our LSC transceivers and showing that they can exchange basic commands and coordinate tasks by communicating only with sunlight.

Funder

Dutch Research Council

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3