On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs

Author:

Cui Hejie1,Lu Zijie2,Li Pan3,Yang Carl1

Affiliation:

1. Emory University, Atlanta, GA, USA

2. University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Purdue University, West Lafayette, IN, USA

Publisher

ACM

Reference59 articles.

1. Ralph Abboud , .Ismail. Ilkan Ceylan , Martin Grohe , and Thomas Lukasiewicz . 2020. The Surprising Power of Graph Neural Networks with Random Node Initialization. arXiv preprint arXiv:2010.01179 ( 2020 ). Ralph Abboud, .Ismail. Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2020. The Surprising Power of Graph Neural Networks with Random Node Initialization. arXiv preprint arXiv:2010.01179 (2020).

2. Davide Bacciu Federico Errica and Alessio Micheli. 2018. Contextual graph markov model: A deep and generative approach to graph processing. In ICML. Davide Bacciu Federico Errica and Alessio Micheli. 2018. Contextual graph markov model: A deep and generative approach to graph processing. In ICML.

3. Protein function prediction via graph kernels

4. The anatomy of a large-scale hypertextual Web search engine

5. Chen Cai and Yusu Wang . 2019 . A simple yet effective baseline for non-attribute graph classification . ICLR Workshop on Representation Learning on Graphs and Manifolds (2019). Chen Cai and Yusu Wang. 2019. A simple yet effective baseline for non-attribute graph classification. ICLR Workshop on Representation Learning on Graphs and Manifolds (2019).

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Deep Learning Network, Addressing Graph Node Imbalance in Social Media Rumor Source Detection;New Generation Computing;2024-07-26

2. Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning;Proceedings of the 36th International Conference on Scientific and Statistical Database Management;2024-07-10

3. TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Improving Issue-PR Link Prediction via Knowledge-Aware Heterogeneous Graph Learning;IEEE Transactions on Software Engineering;2024-07

5. CGAAD: Centrality- and Graph-Aware Deep-Learning Model for Detecting Cyberattacks Targeting Industrial Control Systems in Critical Infrastructure;IEEE Internet of Things Journal;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3