1. Deyu Bo , Xiao Wang , Chuan Shi , and Huawei Shen . 2021. Beyond low-frequency information in graph convolutional networks. arXiv preprint arXiv:2101.00797 ( 2021 ). Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency information in graph convolutional networks. arXiv preprint arXiv:2101.00797 (2021).
2. Neural Graph Learning
3. Ming Chen , Zhewei Wei , Zengfeng Huang , Bolin Ding , and Yaliang Li . 2020 . Simple and deep graph convolutional networks . In International Conference on Machine Learning. PMLR, 1725--1735 . Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020. Simple and deep graph convolutional networks. In International Conference on Machine Learning. PMLR, 1725--1735.
4. Marco Cuturi and Arnaud Doucet . 2014 . Fast computation of Wasserstein barycenters . In International conference on machine learning. PMLR, 685--693 . Marco Cuturi and Arnaud Doucet. 2014. Fast computation of Wasserstein barycenters. In International conference on machine learning. PMLR, 685--693.
5. Michaël Defferrard , Xavier Bresson , and Pierre Vandergheynst . 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems , Vol. 29 ( 2016 ). Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, Vol. 29 (2016).